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Abstract -fjf CO 

Shape Memory Alloys (SMAs) have recently been considered for dynamic loading JS. < £5 
applications for energy absorbing and vibration damping devices. An SMA body Er o. S 
subjected to external dynamic loading will experience large inelastic deformations g. g. — 
that will propagate through the body as phase transformation and/or detwinning § -T) Z 
shock waves. The wave propagation problem in a cylindrical polycrystalline SMA Q c CO 
rod induced by an impact loading is considered in this paper. Numerical solutions 2. — jj 
for various boundary conditions are presented for stress induced martensite and 3 33 jr{ 
detwinning of martensite. The numerical simulations utilize an adaptive Finite El-   . ©2-5 
ement Method (FEM) based on the Zienkiewicz-Zhu (ZZ) error estimator. Selected cu Ej3 
results are compared to known analytical solutions to verify the adaptive FEM ap- o H 
proach. The energy dissipation in an SMA rod is evaluated for a square pulse stress ^ 
input applied at various temperatures involving both stress induced martensite and   
detwinning of martensite. The dynamic response of a NiTi SMA rod is also studied 
experimentally in a split Hopkinson bar apparatus under detwinning conditions. 
Strain history records obtained by strain gauges placed at different locations along 
the SMA rod are compared with numerical simulations for a square pulse stress 
input. The quasi-static and dynamic stress-strain hysteretic response of the SMA, 
both due to detwinning, are found to be nearly identical. The quasi-static tests are 
used to calibrate the rate independent constitutive model used for the numerical 
simulations, which are found to match the experimental observations reasonably 

well. 
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1    Introduction 

There are many areas of applications which can successfully utilize the unique 
properties of SMAs. The engineering research presented in this paper relates 
directly to the design of SMA components capable of absorbing dynamic loads. 
Such components can be integrated into critical parts of structures that may 
need protection from impact loads. Examples include joints that connect the 
hull of an underwater vehicle with its internal structure, tank armor or blast 
resistant cargo containers. Another promising field of application includes var- 
ious active or passive vibration damping devices. Many different SMA devices 
have been proposed among which nonlinear hysteretic SMA springs (Yiu and 
Regelbrugge, 1995; Graesser, 1995), wires (Thomson et al, 1995; Fosdick and 
Ketema, 1998) or rods (Feng and Li, 1996). In a recent paper (Lagoudas et al., 
2001) the authors investigate numerically the vibration damping capabilities 
of SMAs. 

Shape Memory Alloys are a class of materials that change their internal struc- 
ture due to changes in temperature and/or externally applied loads. At high 
temperatures the crystal lattice is in the high symmetry austenite phase (A). 
At low temperatures the material exists in a low symmetry martensite phase 
(M). The austenite to martensite phase transition is diffusionless and is char- 
acterized by shear deformations of entire regions inside the material (Way- 
man, 1983). What makes SMA materials remarkably different from ordinary 
metals is the shape memory effect and the effect of pseudoelasticity which 
are associated with the specific way the phase transition occurs (Funakubo, 
1987). The shape memory effect allows material which has been deformed 
while in the martensitic phase to recover its shape upon heating. The mech- 
anism behind this behavior is the ability of SMAs to allow detwinning of the 
self-accomodated martensitic variants. The pseudelasticity in SMAs is their 
ability to support large inelastic strains recoverable upon unloading due to 
the reverse phase transformation from martensite into austenite. The primary 
way in which such strains are introduced in the material is the stress induced 
phase transformation from austenite into martensite. The pseudoelastic re- 
sponse provides both energy dissipation capabilities and shape recovery dur- 
ing the thermomechanical loading path. Utilizing the shape memory effect also 
leads to dissipation of mechanical energy but the SMA has to be heated after 
the loading is applied to recover its shape. 

Several constitutive models have been developed in recent years to model the 
shape memory effect and pseudoelasticity of polycrystalline SMAs. Among the 
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most widely accepted rate independent models are the exponential  (Tanaka, 
1986), cosine (Liang and Rogers, 1990) and polynomial (Boyd and Lagoudas, 
1994,1996). Any of these models can be unified using a thermodynamic frame- 
work (Lagoudas et al., 1996) based on the selection of appropriate thermo- 
dynamic potentials. This unified constitutive model is extended by Bo and 
Lagoudas (1999a,b,c,d) to incorporate transformation induced plastic defor- 
mations and to account for the evolution of the material behavior during 
cyclic loading. In the models proposed by Brinson (1993); Brinson and Lam- 
mering (1993); Lagoudas and Shu (1999) the martensitic volume fraction is 
subdivided in two parts to account for thermally induced self-accommodated 
martensite and stress induced detwinned martensite. A different approach is 
taken by Abeyaratne et al. (1993,1994); Abeyaratne and Knowles (1993) who 
consider a rate dependent constitutive model that allows for softening during 
phase transformation. Other authors such as Patoor et al. (1996); Siderey et al. 
(1999); Sun and Hwang (1993a,b) use micromechanical techniques to average 
the response of the parent austenitic phase and the different martensitic vari- 
ants to obtain a model for the macroscopic behavior of polycrystalline SMAs. 
For further details on SMA models the reader is referred to the work by Qidwai 
and Lagoudas (2000b) as well as the review paper by Birman (1996). In the 
current work the unified approach (Lagoudas et al., 1996) is chosen over the 
more complex micromechanical models, assuming rate independence in the 
constitutive thermomechanical response of SMAs. As it will be shown later 
such an assumption is confirmed experimentally for the case of detwinning of 
martensite. 

In a recent paper (Chen and Lagoudas, 2000) the rate independent model for 
polycrystalline SMAs (Lagoudas et al., 1996) is employed to obtain solutions 
to the coupled thermomechanical problem for SMA materials. The authors 
take into account the latent heat generation and assuming adiabatic condi- 
tions they solve the problem by the method of characteristics together with 
jump conditions that yield unique solutions. A similar study (Bekker et al, 
2002), but for different constitutive models has been carried out for both 
isothermal and adiabatic conditions. In a different setting Oberaigner et al. 
(1996) investigates numerically the coupled problem of wave propagation and 
heat transfer in an SMA rod. The authors focus on stress pulses of low mag- 
nitude that cause only elastic deformations. The temperature at one end of 
the SMA rod is chosen as a function of time in a such a way as to utilize 
the phase change due to the shape memory effect in order to maximize the 
damping characteristics of the rod. 

The dynamics of phase transformation in piecewise linear elastic materials 
with non-monotone hysteresis is also studied by Abeyaratne and Knowles 
(1991). A unique solution is obtained with the use of a kinetic relation con- 
trolling the rate of the phase transformation together with a nucleation con- 
dition for the initiation of the transformation. In later work the same authors 



extend the analysis to account for thermal effects (Abeyaratne and Knowles, 
1994a,b). In a general setting Pence (1986) considers wave propagating in a 
nonlinear elastic bar with a non-monotonic stress-strain relationship subjected 
to a monotonically increasing load. It is found that for sufficiently high loads 
a strain discontinuity associated with phase transformation is being created. 

There has been a limited amount of experimental work done on characterizing 
the dynamic response of SMAs. An experimental study on the propagation of 
shear waves in single crystal Cu-Al-Ni shape memory alloy has been done by 
Escobar and Clifton (1993). Phase transition shocks are not observed directly 
due to their low propagation speed. Instead, their presence is inferred from 
the measurements of the elastic waves at the rear end of the specimen. An 
analytical attempt to model these experiments is presented in Abeyaratne and 
Knowles (1997). In this work experiments will be conducted on polycrystalline 

NiTi SMAs. 

Classical rate-independent plasticity theory is not sufficient to describe the 
behavior of SMA materials. While it is still capable of partially predicting the 
shape memory effect (without capturing the strain recovery upon heating), 
it cannot model the pseudoelastic response. However, for rate independent 
models of SMAs both theoretical and experimental developments of dynamic 
elasto-plasticity can be used for guidance. Theoretical developments on elasto- 
plastic wave propagation in long rods dates back to the works of Von Kar- 
man (1942), Rakhmatulin (1945) and Taylor (1958). Extensive experiments 
on elasto-plastic wave propagation have been carried out by Bell (1962); Chid- 
dister and Malvern (1963); Kolsky (1949); Clifton and Bodner (1966); Bodner 
and Clifton (1967) using a split-Hopkinson bar apparatus. The split bar tech- 
nique itself was introduced by Kolsky (1949). The reader is referred to classical 
texts on wave propagation such as (Kolsky, 1963; Graff, 1975) for additional 
information. In recent years there have been extensions to the Hopkinson tech- 
nique (Nemat-Nasser et al, 1991) that allow for dynamic test recovery in both 
tension and compression. The basic split-Hopkinson technique will be used in 
this work to conduct the dynamic experiments on polycrystalline NiTi SMA 

rods. 

The main focus of this paper is the study of the one-dimensional dynamic 
problem of loading an SMA rod under conditions of pseudoelasticity and de- 
twinning. Both computational and experimental results are obtained. Based on 
experimental observations the rate independent constitutive model (Lagoudas 
et al., 1996) is selected. The complex nature of most constitutive models for 
SMA'materials makes direct integration of even the simplest uniaxial transient 
initial boundary value problems (IBVP) very complicated. Closed form solu- 
tions can usually be obtained for simple boundary conditions, e.g. impact step 
loading (Chen and Lagoudas, 2000) or by simplifying the constitutive model 
so that the stress can be obtained as an explicit function of strain (Bekker 



et al 2002). Numerical solutions of the impact loading problem have been 
obtained by (Jimenez-Vicktory, 1999; Bekker et al., 2002) by mainly using 
the Lax-Friedrichs finite difference scheme. This FD scheme has been found 
to produce a considerable amount of numerical dissipation which makes the 
distinction between a self-contained nonlinear shock and a rarefaction wave 
difficult. In this paper numerical simulations of step and pulse shock loading 
both for stress induced phase transformation and detwinning of martensite are 
performed using the FEM method. An adaptive meshing technique based on 
the ZZ error estimator (Zienkiewicz, 1987) is utilized in order to. improve the 
accuracy of the method and decrease computational time. Comparisons with 
analytical solutions are made whenever such solutions are available. Based on 
the simulation results, the energy dissipation of SMA rods for pulse loads are 

discussed. 

An experiment on the wave propagation in a SMA rod is also performed in 
a split-Hopkinson bar apparatus. A nearly equiatomic NiTi SMA specimen 
instrumented with strain gauges is tested under detwinning conditions for a 
pulse impact load. Separate tests in a standard uniaxial MTS test frame are 
performed to establish its quasi-static response. The results of the Hopkinson 
bar experiment are used to extract the dynamic stress-strain relationship due 
to detwinning. The adaptive FEM technique is used to simulate the propaga- 
tion of stress waves in the dynamic experiment. 

The paper begins with a brief overview in Section 2 of the field equations 
and boundary conditions and constitutive model defining the problem. The 
implementation of the FEM for the NiTi SMA is outlined in Section 3.1. The 
adaptive strategy is presented in Section 3.2. In order to verify the implemen- 
tation of the adaptive FEM a boundary value problem with a step-function 
stress boundary condition is solved in Section 4.1. This specific boundary con- 
dition allows for the construction of analytical solutions which can be used 
to verify the numerical solution methodology. Then, a square pulse IBVP is 
solved for conditions of stress induced martensite (Section 4.2) and detwinning 
(Section 4.3). Expected values for energy dissipation as the pulse propagates 
through the rod are presented. Section 5 describes the split-Hopkinson bar 
experiment and discusses the dynamic characterization of SMA materials. Fi- 
nally, in Section 5.4 the numerical schemes developed in this paper are utilized 
to simulate the experimental results. 

2    Field equations and constitutive model for the impact problem 

of SMA rods 

A cylindrical SMA rod of uniform cross-section and length L is considered. A 
coordinate cover is associated with the centroidal axis of the rod spanning the 



interval 0 < x < L. The rod which is initially stress free and at rest is subjected 
to an impact load at its left end (a: = 0). The right end (x = L) is assumed to 
remain traction free. The field equations, initial and boundary conditions are 
presented next followed by a description of the thermomechanical constitutive 
model for SMAs. 

2.1    Field equations, initial and boundary conditions 

The rod is assumed to be long compared to its diameter so it is under uniaxial 
stress state and the stress a(x, t) depends only on the axial position and time. 
The axial component of the displacement is denoted by u(x,t). Linearized 
strain is further assumed so the axial component of the strain e(x,t) is related 
to the displacement by e(x,t) = du/dx. Finally, the density of the material p 
is assumed constant. The local form of the balance of linear momentum and 
energy then read (Graff, 1975; Malvern, 1977): 

(1) 

(2) 

where U is the internal energy per unit mass and q{x,t) is the heat flux. 

The timescale of the impact problem is on the order of micro- to millisec- 
onds. The physically meaningful IBVP is an adiabatic one because such time- 
intervals are too short for heat conduction to take place as well as for convec- 
tion to remove heat through the surface of the rod. In the adiabatic approxi- 
mation, therefore, the heat conduction term q in (2) can be neglected so the 
balance of energy in conjunction with (1) yields 

ÖU        d2u 
P^7 = a 

dt        dxdt 
(3) 

Equation (1) and (3) involve the field variables u, o and U. Through appro- 
priate constitutive assumptions to be discussed in the following section only 
u{x,t) and the temperature T(x,t) will become the independent variables. 

For the field variables the following initial and boundary conditions are as- 

sumed: 



u\t=0 = 0,^\t=o = 0,T\t^=TR (4) 

o\x=o = <ro(t), o\x=L - 0 (5) 

The initial conditions indicate that the rod is at rest and its temperature is 
equal to the ambient temperature TR. The boundary conditions specify the 
traction a0{t) appliedx to the left end of the rod. The right end is kept traction 

free. 

2.2    Thermomechanical constitutive model for polycrystalline SMAs 

The field equations (1), (3) and initial and boundary conditions (4), (5) alone 
are not sufficient to form a complete IBVP. A thermomechanical constitutive 
model that captures the key characteristics of pseudoelasticity and detwinning 
of the SMA response is needed. 

2.2.1    Stress induced martensite 

The constitutive model used is formulated in terms of the Gibbs free energy 
G and employs the volume fraction of detwinned martensite f formed from 
austenite as an internal variable (Lagoudas et al, 1996). The specific form of 
G in the one dimensional case is: 

G = G{o-,T,Z) = -±pSo*-\o{a{T-TR)+ei) {Q) 

+c ((T - TR) - Tin (£)) - s0T + u0 + /(£) 

and it is linked to the internal energy U by a Legendre transformation: 

U = G + TS + fce (7) 

The definition of G includes the inelastic transformation strain et associated 
with the phase transformation. The function /(£) is taken to be a quadratic 
polynomial in f and is responsible for the transformation hardening: 

i There is no continuity requirement on a0{t) i.e. impact loads are allowed 



\kpbMe + ^+^ e>o (8) 

where material constants pbA, pbM, in and ^ define the transformation sur- 
faces and the hardening during the forward and reverse transitions (Qidwai 
and Lagoudas, 2000b). In the above f > 0 denotes the forward transformation 
and i < 0 the reverse. The remaining material properties in (6) are the effec- 
tive compliance <S, effective thermal expansion coefficient a, effective specific 
heat c, effective specific entropy at the reference state s0 and effective specific 
internal energy at the reference state u0 for the SMAs which is composed of 
a mixture of austenite and martensite. They are approximated by the follow- 
ing averaging expressions, which are good approximations for polycrystalline 
SMAs with random orientation distributions for grains (Boyd and Lagoudas, 

1994): 
S = 5(0 = SA + £A<S, AS := SM - SA 

a = a(0 = ccA + £Aa, Aa := aM - aA 

c= c(0  =cA + Z&c,    Ac:=cM-cA (9) 

so = s0(O = so + £Aso> Aso := so' - 4 

Uo = uQ(0 = uA + £Au0, Au0 := u%! - uA 

Quantities with subscript A denote the appropriate material constant for the 
austenite phase and those with subscript M for the martensite phase. Follow- 
ing a standard thermodynamic procedure the following constitutive relations 

are obtained: 

5 = -— (10) s     &r 

—<% 

vr = -p^ (12) 

where s is the entropy and TT is the driving force for the transformation. Using 
(11) the following constitutive relation is obtained: 

a = E(0(e-a(0(T-TR)-e
t) (13) 

where £(£) = 1/5(0 is the effective elastic modulus. The evolution of the 
inelastic variable f is given by a consistency condition derived from a trans- 
formation criterion (Lagoudas et al, 1996). The evolution of e« follows that of 



f and in the one dimensional case can be integrated explicitly to yield: 

e* = Hsgn{a)£ (14) 

Here H is a positive material constant corresponding to the maximum trans- 
formation strain. The principle of maximum transformation dissipation in 
conjunction with the second law of thermodynamics leads to the following 
transformation surface: 

7T = ±Y* (15) 

where Y* = -|pAs0(A°' - M°°) - JpASo(M
M - M°f - A°f + A"). The +Y* 

at the right hand side stands for the forward (A -> M) transformation surface 
and -Y* for the reverse (M -> A) transformation surface. The start and 
finishing temperature for the forwards transformation are denoted by A03 and 
A°f and the start and finishing temperatures for the reverse transformation 
are denoted by Mos and Mof, respectively. 

For detailed description of the transformation rule and conditions for the for- 
ward and reverse phase transformation the reader is referred to the original 
paper by Lagoudas et al. (1996). The next section describes how detwinning 
is incorporated into the constitutive model. 

2.3   Detwinning of martensite 

The detwinning deformation will be accounted for by adapting the constitu- 
tive model. The material constants for twinned and detwinned martensite are 
the same. Consequently, the initial response and the response after the com- 
pletion of detwinning will both be elastic with the slope being the modulus of 
elasticity of martensite EM. The deformation is irreversible upon unloading 
which, consequently, will also be elastic. 

The material constants in the constitutive model can be reinterpreted, replac- 
ing the ones for the austenitic phase with the ones for martensite. This will 
ensure the same elastic response prior the onset of detwinning and after its 
completion. The internal variable f should be interpreted as the volume frac- 
tion of detwinned with respect to self-accommodated martensite and H is the 
maximum inelastic strain. From equation (15) the transformation surface will 

have the following simple form: 

aH-% = 0 (16) 



The hardening function in this case may be expressed as follows: 

/(£) = \pbdi2 + Yd£, for £ > 0 (17) 
2' 

where Yd = asH and pbd = <7/# - Yd. For convenience, the critical stress 
level a, for the onset and af for the completion of the detwinning deformation 
are introduced as material constants. Note that for the detwinning case f can 
only be positive since the unloading is entirely elastic. This adaptation of the 
model allows for the modelling of detwinning deformations when no stress 
induced martensite is being produced. 

2.4    Isentropic approximation 

The adiabatic heat equation can be simplified in order to facilitate the numer- 
ical treatment of the impact problem. Using the Legendre transformation (7) 
the internal energy can be eliminated from equation (3): 

*■!"£ (18) 

Further, upon combining (6) and (10) an explicit expression for the entropy 

is obtained 

s = aa/p + c \n{T/TR) + As0£ + s$ (19) 

On substituting (19) into (18) the balance of energy becomes: 

pc^ = -T^(aa + pAs0£) + 7r| (20) 

According to Cory (1985) and McNichols (1987) TT < pAs0T for most SMAs. 
For NiTi the precise values yield 7r/pAs0T < 0.013 so equation (20) can be 
approximated by 

dt dt pc~ = -T"H7 (aa + PAs^ (21) 

which is equivalent to the isentropic condition st = 0. The heat capacity c can 
be assumed constant for the two phases (i.e. c^ = cM). Then equation (21) 
can be integrated directly, yielding: 

10 



T = TKe_£(Q(0<r+pAso?) (22) 

Consequently, the differential equation (3) is replaced by the algebraic equa- 
tion (22). The impact problem then reduces to solving the balance of linear 
momentum (1) for the only field variable u(x,t). The remaining field vari- 
ables a and T are coupled with the strain e and the internal variable of the 
constitutive model £ by equations (13) and (22). 

2.5    Tangent moduli 

A nonlinear displacement-based FEM solver utilizing the Newton-Raphson 
iteration to resolve the nonlinearity requires partial derivatives of the stress 
with respect to an increment of the strain. An increment in the strain causes 
increments in both stress (equation (13)) and temperature (equation (22)): 

da _ da     da dT ,   , 
de      de     dT de 

In order to find the total derivative g a closed form expression for fj is 
needed. This is done by differentiating equations (13) and (22) with respect 
to the strain and combining the result to obtain: 

= -(Q| + (^ + pAS0)|/(f + .| + (^ + pAS0)§) 
(24) 

Second order approximations for the partial derivatives ff, ff, ff and ^ are 
developed in (Qidwai and Lagoudas, 2000a) and thus all the quantities in (23) 
can be computed numerically. 

3    Numerical implementation 

The numerical techniques used to implement the constitutive laws are de- 
scribed first. For given strain increment Ae and temperature increment AT 
the stress a given by equation (13) is computed with the help of the cutting 
plane return-mapping algorithm described in (Qidwai and Lagoudas, 2000a). 
A displacement based FEM provides strain increments. In the impact problem 
both stress and temperature depend on the strain increment Ae, that is for 

11 



given strain both (13) and (22) have to be satisfied simultaneously. This is 
done via an iterative process. The process starts with given values e(0), CT

(0)
, 

T(0) for strain, stress and temperature which satisfy (13) and (22). Given a 
strain increment Ae the pair (CT.T) corresponding to strain e = e^ + Ae is 
found through the iteration: 

ff<«+i>=j5(e-a(TW-TB)-e*(B)) 

T(n+1) = TRe-M
cu,ln+1)+^80^n+1)) 

(25) 

(26) 

The first equation (25) uses the return-mapping algorithm to compute a new 
value a(n+1) for the stress based on the old temperature T(n). The second 
equation (26) attempts to enforce the isentropic heat equation by comput- 
ing a corrected temperature T(n+1). The process is terminated when there is 
no further progress, i.e. when a(n+i) _ ff(n) and T(n+1) - T^ both become 
smaller than certain tolerance. The algorithm showed linear convergence in 
the test cases, however a detailed theoretical study is required to establish its 
properties. 

3.1    FEM procedure 

A standard semi-discrete Galerkin approximation is used to generate the weak 
form of the problem. In this paper only linear elements will be used. Let 
Pl([0,L]) C ^([OjL]) be the set of piecewise linear functions over each ele- 
ment and {V>i}Hi be the usual basis oiPl([0,L]). The weak form of (1) then 
reads: 

Find uh(x,t) = EL Ui{t)il>i{x) such that for Vvh G Pl{{0, L]): 

i iav h      [h dvh 

PL ~W^ + J0 °^dx -av 
x-0 

(27) 

As usual the number of nodes is N (i.e. JV-1 elements) and the nodal values for 
the displacement are denoted by Ui(t). Whenever appropriate, vector notation 
will be used, that is U = {Uu...,UNy. Problem (27) is reduced to a second 
order nonlinear system of ODEs: 

MÜ = F(U) (28) 

where M is the mass matrix and F?(t)(U) is the forcing term. The subscript 
f(i) stands to indicate that F?(t)(U) does not depend on the displacement 
only but on the whole loading history. However, for any given loading history 

12 



the stress and hence Fe(t)(U) can be viewed as well defined single valued 
functions. Thus, without loss of generality the subscript £(£) will be dropped 
in the discussion that follows. The mass matrix and load vector are given by: 

M: rH = pjQ Mjdx (29) 

*&=-£*%*> <*» 
It is also useful to introduce the forcing term F(U) due to inelastic strains 
and the stiffness matrix K(U) which are given by2: 

.*M-r *«>££* (3i) 

fi(U) = jQ
L E(0 [e\0 + a(0(T - TR)} ^dx (32) 

Note that the decomposition F(U) = F(U) - K(U)U holds and (28) can be 
rewritten as: 

MÜ + K(U)U = F(U) (33) 

The time integration in (28) (or (33)) is done by the backward difference 
method, a member of the Newmark family (Newmark, 1959; Reddy, 1993). 
For t = ts the Newmark scheme is defined by 3 : 

Us+1 = Us + rUs + \T\{1 - 7)Ü, + 7Ü,+i) (34) 

\Js+l = Vs + r((l-a)iJs + aVs+1) (35) 

The backward difference method is obtained by setting a = § and 7 = 2. It is 
easy to show (see e.g. (Reddy, 1993)) that the above difference equations lead 
to the following system of nonlinear algebraic equations for Us+i\ 

2 MUS+1 = F(U5+1) + Gs (36) 
7T2 

or, equivalently, to 

^ JLM + K(US+1)) Us+1 = F(U.+1) + Gs (37) 

2 Similarly, a more precise notation for K and F would be K^)(U) and F?(t)(U), 
respectively. 
3 The usual notation Us := V{ts) is used 

13 



where Gs = M i-~^Us + -^Üs 4- ^—L\2^\. The nonlinear problem (36) is solved 
by linearizing the right-hand side 

fl(U + AU) ~ F,(U) + £ d-^L^Uj 
i=i   ^ 

and using the chain rule to obtain: 

L«(u):= -Bur=A ä^x = L Te-^-^dx     (38) 
/o   dUj dx 

The solution Us+i is found through a Newton-Raphson iterative process. Set 
the initial guess to U^ = Us and for n = 1,2 ... until convergence compute: 

Ufö15 = (ArM - L(U&))  ' (F(U&) - L(ui"+\)Ua + G.)       (39) 

The cutting plane method (Qidwai and Lagoudas, 2000a) which is used to re- 
solve the nonlinear behavior of the material also provides second order numer- 
ical approximation for the derivative da/ds which results in a quasi-Newton 
algorithm. Since the Newton algorithm is only locally convergent in the cases 
when it diverges the simple iteration was applied to (37). Again, set U^ = Us 

and for n = 1,2 ... until convergence compute: 

UKX) = (^M + K(uä)uä)  l (F(U&) + G.) (40) 

In all numerical examples tested the later iteration demonstrated global linear 
convergence. 

3.2   Adaptive mesh refinement 

Let a„ be the stress at the completion of the Newton iterations for given time 
step n, i.e. t = tn. For linear elements oh is a piecewise constant function. Let 
Wh be the continuous, piecewise linear function in [0, L] which assumes the 
averaged value of a'1 at each nodal point. The error indicator r]a(e) is defined 
locally over each element e by (Zienkiewicz, 1987): 

Va(e) = 1^ - a\& (41) 

where ||-||0e is the L2 norm. An element e is refined if 

7k(e)/ow > TOL1 (42) 

14 



where amax is the absolute value of the maximum attainable stress in the rod, 
which for impact problems is known in advance. Two neighboring elements e{ 

and ej+i are merged into one if 

Va(ei)/amax < TOL2, Va(ei+l)/amax < TOL2 (43) 

Two aspects of the actual implementation details of the FE analysis should be 
emphasized. The linear system (36) (or (37)) is tridiagonal and poses no com- 
putational problems. Secondly, the most time-consuming parts of the FE pro- 
cedure are the assembly of the stiffness matrix at each Newton step (because 
of the nonlinear dependance of the stiffness on the strain) and the assembly of 
the force vector. They require the execution of the stress update procedure via 
the return-mapping algorithm which is a computationally expensive operation 
and is preformed once for each element at each Newton step. 

Clearly a global uniform h-refinement strategy used to achieve satisfactory 
spatial discretization will impose severe restrictions on the problem size due 
to the assembly time issues. In order to avoid this the local criterion (42) is 
applied to each element at the completion of the Newton iteration to refine or 
coarsen the mesh. If there is no further need to refine the mesh the algorithm 
proceeds to the next time step. It was found that this approach works very 
well for the class of SMA hysteretic materials under consideration. 

4    Numerical Examples 

The implementation of the FEM was tested in three different numerical exam- 
ples. The step loading problem under conditions of pseudoelasticity (T > Aof) 
presented in the next section is used to compare the numerical solution to ex- 
isting analytical solutions (Chen and Lagoudas, 2000; Bekker et al., 2002). 
It is also used to demonstrate the capabilities of the adaptive mesh refine- 
ment strategy. Secondly, a problem with pulse boundary conditions is solved, 
again under pseudoelastic conditions. The third problem also features a pulse 
boundary condition but at a lower temperature (T < Mos) so only detwinning 
of martensite is involved. 

The material properties (Table 1) for all model problems are taken from (Qid- 
wai and Lagoudas, 2000a) and represent generic NiTi SMA properties. In ad- 
dition to that for all numerical simulations the length of the rod was taken to 
be 0.5m. All calculations were performed on a 933 Mhz PHI machine running 
Windows NT. 
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Table 1 
Material parameters used in the SN A model 

Material constant Value Material constant Value 

EA 70 x 109 Pa da 
dT 7.0 x 106 Pa/(m3K) 

EM 30 x 109 Pa M°f 275  °K 

aA 22 x 10~6/K Mos 291   °K 

aM 10 x 10~e/K Aos 295  °K 

H 0.05 Aof 315  °K 

4-1    Step loading problem 

The fixed impact stress initial-boundary value problem4 is defined by setting 
the boundary condition to be the step function: 

aoCO 
0   for t < 0 

ao for t > 0 
(44) 

The strain level €o which causes the constant impact stress Co can be found 
from equation (13). This particular boundary condition is chosen because it is 
a natural starting point for nonlinear hyperbolic equations and because there 
are existing analytical solutions for it. 

4-1.1    Analytical solutions to the step loading problem 

The structure of the solution depends strongly on the impact stress CT0. Let the 
pair (eei, aei) be the point on the hysteresis curve that corresponds to the start 
of the phase transformation. In this example o"o it is taken to be sufficiently 
high so that full phase transformation transformation has occurred. It is also 
required that the value of a0 be high enough, so that the graph of of the stress 
strain relationship of the SMA is below the line connecting the points (eei, ae{) 
and (eo,co) (see Figure 1). 

Following Chen and Lagoudas (2000); Bekker et al. (2002) it can be shown 
that for material with initial linear stress-strain relationship prior to the onset 
of phase transformation the solution has the following two-shock structure: 

4 When the same initial boundary value problem is reformulated as an initial prob- 
lem on an infinite domain with the initial condition being a step function it is usually 
referred to as the Riemann problem. 
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<TA 

Fig. 1. Schematic of the loading portion of a stress-strain relationship and the critical 
points defining the solution to the problem. 

oo for   0   < x/t < Vph 

a{x, t) = I ael for Vph < x/t < Vel 

0  for Va < x/t 

(45) 

T(x,t) = < 

T0 for   0   < x/t < Vph 

Tel for Vvh < x/t < Vel 

0  for Va < x/t 

(46) 

where T0 is the temperature corresponding to the impact stress <JQ and Tei 
is the temperature just prior to the onset of the phase transformation. The 
faster shock is a linear thermoelastic elastic shock and has velocity 

Vd = 
I erg (47) 

This shock is due to the shock type of the boundary condition and the initial 
linear stress-strain response. The second, slower shock, is a transformation 
shock which travels with velocity 

Vph = 
I dp - aei 

P{S0 - £el) 
(48) 

This shock occurs not only because of the boundary condition but also be- 
cause of the convex-down nature of the stress-strain relationship for e > eei. 
Higher stress levels travel with higher velocity than lower stress levels which 
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make the shock self sustained and independent of the boundary condition (see 
(Godlewsky and Raviart, 1996, pg. 83-97) for a general discussion as well as 
(Chen and Lagoudas, 2000; Bekker et al., 2002) for solutions specific to SMA 
materials). The phase transformation shock specifies the point of abrupt phase 
transition. For material points with x < Vpht the material is in the martensitic 
phase and the region x > Vpht is still in the austenitic phase. 

Note that the adiabatic heat equation (22) does not provide for a completely 
linear initial response. However, prior to the onset of phase transformation, 
£ = 0 and the heat equation (22) can be linearized as follows: 

T = TR(1 -^) + ö ((^)2) (49) 
pc \ pc   ) 

By neglecting the higher order terms in (49) the remaining linear part can 
be substituted in (13) to obtain a completely linear adiabatic stress-strain 
response. The linear approximation in (49) is justified in the thermoelastic 
range before commencement of phase transformation because ^ « 10~3. If 
equation (22) is not linearized the elastic shock will be replaced by a continuous 
function with very high gradient. The velocity of the points on the graph of 
this function will deviate from the velocity Vei of the elastic shock by « 10_o. 

4-1.2   Numerical results for the step loading problem 

For all numerical simulations the impact stress level is a0 = —AOOMPa cor- 
responding to impact strain of e = 0.0635. The reference temperature is 
TR = 320 °K. The FEM solver was set to use the backward difference time 
integration scheme and the Newton-Raphson method to solve the nonlinear 
system (36). The Newton-Raphson iteration showed quadratic convergence at 
all time steps except for the first few ones when the shock were forming. In 
the cases when it was diverging the alternative direct iteration (40) approach 
was used. 

Significant computational savings can be obtained if isothermal instead of adi- 
abatic conditions are assumed. In an isothermal problem the temperature is 
held constant T = TR and the balance of energy (2) is not considered. Thus 
the quasi-static hysteresis of the material is used instead of solving equations 
(13) and (22). For a NiTi SMA with the material data from Table 1 the dif- 
ference between the adiabatic and isothermal hysteresis is shown in Figure 2. 
The shape of the hysteresis is the same and the differences in the transforma- 
tion portion will not affect the structure of the solution provided that a0 is 
well above the stress level required to finish the transformation. Consequently, 
no matter whether isothermal or adiabatic conditions are assumed the shock 
speeds Vph and Vei will only depend on the values for eeU crei, £o, o"o- From 
a computational point of view this simplification avoids the iteration process 

18 



es 

CO o u 
■*-» 

CO 

-100 - 

-200 -^ 

-300 

-400 -J 

-500 

-600 H 

-700 

Isothermal 

Adiabatic 

-0.08 -0.04 
Strain 

0.00 

Fig. 2. An adiabatic and isothermal path for the material data in Table 1 at 
T = 320 °K. Under adiabatic conditions higher stress levels are required to complete 
the phase transformation compared to isothermal hysteresis loops. 

(25),(26) (typically 6-7 iterations) which results in a significant reduction in 
computational time. While the structure of the solution is not compromised 
very fine spatial meshes can be explored for the purposes of comparing ana- 
lytical and numerical solutions. 

For the isothermal hysteresis (Figure 2) an impact stress of <70 = 400MPa is 
sufficient for the full completion of the phase transformation under isothermal 
conditions. The onset of phase transformation begins at aei = —195MPa for 
a strain et\ = 2.78 x 10~3. Given this, the speed of the two shocks (48) and 
(47) are found to be: 

Vph = 723m/s 
Vet = 3294m/s 

(50) 
(51) 

Based on the first few numerical results (Figure 3) and (Figure 4) several ob- 
servations can be made. First, all numerical solutions have the expected two 
shocks - one elastic and another corresponding to the phase transformation. 
Fixed meshes with coarse spatial discretizations have oscillations close to the 
phase shock location. A comparison of the two meshes in Figure 3, both for 
a fixed time-step of r = O.lps at time t = 30/is shows that oscillations can 
be eliminated by refining the mesh. Secondly, the backward difference scheme 
which was used in these computations, introduced numerical dissipation which 
is most pronounced at the elastic shock. Several other members of the New- 
mark family were tested. Explicit methods as well as the constant acceleration 
scheme were found to be unconditionally unstable producing highly oscillatory 
solutions that were diverging with time. Of those methods that were able to 
converge the backward difference was found to dampen the high frequency 
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Fig. 3. Stress profile at 30/is for a fixed mesh with 500 (a) and 2000 elements 
(b). Numerical oscillations are eliminated for the finer spatial discretization. The 
position of the elastic shock is marked by a dashed line. 

(a) (b) 

Fig. 4. Stress profile at 30/is for an adaptive mesh with two different time steps. 
The linear shock is smeared for a coarse time step r = 0.1/is (a). It is much sharper 
when a finer step of r = 0.001/us (b) is used. Mesh nodes are marked with black 
squares and the thin line at the top shows the density of elements. 

oscillations (Figure 3(a)) in the most efficient manner and was subsequently 
chosen for all future computations. The numerical dissipation can be decreased 
by appropriately decreasing the time step. The quasi-Newton method used to 
solve the nonlinear system (36) showed quadratic convergence at all time steps 
but the first few ones when the shock were forming. In that case the alternative 
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direct iteration (40) approach was used. 

Quantitatively the results obtained by both the fixed and adaptive FEM are 
in agreement with the analytical solution. In regions away from the shocks 
the relative difference in the values of the stress for the numerical and the 
exact solution is less then 10-4. The accuracy of the solutions therefore is 
determined based on the quality of the numerical solution close to the shock 
locations. The interval covering a shock (phase or elastic) where the numerical 
values for the stress differ from the exact ones by more than 1% is assumed 
to be the range of uncertainty for the numerical value of the shock location. 
Consequently, the left and right end of this interval are assumed to be bounds 
for the position of the shock of the numerical solution. 

Based on this measure of error, for a time step of r = O.lßs the phase shock 
is found to travel with velocity in the range 693 — 900m/s. The velocity of 
the elastic front is calculated to be in the range 3316±420ra/s. These results 
are the same for a fixed (Figure 3(b)) and adaptive mesh (Figure 4(a)). This 
indicates that the adaptive and fixed FEM converge to the same solution. 

The smearing of the stress profile in the region of the elastic shock is due to the 
time-integration scheme. When the time step is decreased the slope becomes 
steeper and eventually converges to the shock. For an adaptive solution with 
a time step r = 0.001/is (the same computation for a fixed mesh was time 
prohibitive) the calculated values for the phase shock are now in the range 
723 — 733m/s and the elastic shock is within the bounds 3256 — 3366m/s 
(Figure 4(b)). This indicates that the lower bound for the transformation 
shock is very close to the actual value (50) and that the elastic shock (51) is 
virtually in the middle of the suggested numerical range. The relative error 
in the predicted value for the phase shock velocity decreases from 24% for 
r = 0.lfj,s down to 1.3% for r = 0.001^5. The error in the elastic shock 
speed decreases from 12% to 1.1% which is a clear indication that the FEM 
algorithm is converging to the exact solution. 

An inspection of Figure 3 reveals that there are large regions in the bar with 
no variation in the stress. This is fully utilized by the adaptive approach. 
Figure 4(a) shows an adaptive FE solution with the same time step as the 
solution on Figure 3(b) and a adaptive tolerance (see (42)) set to 10~4. This 
accuracy is comparable to the one of a fixed mesh with 2000 elements. The 
maximum number of elements that the adaptive mesh contained was 305. The 
order of magnitude fewer number of elements in the adaptive meshes induced 
a corresponding order of magnitude decrease in the computational time. 

A comparison in the performance of the fixed and adaptive FE methods is 
given in Table 2. The time step is r = OMfis. The number of elements for the 
fixed FEM is 16000. The adaptive solution was chosen so that it had compa- 
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Table 2 
Execution times for fixed and adaptive meshes 

Time Fixed Mesh Adaptive Mesh 

Elements Time (min) Elements Time (min) 

10 [is 16000 56 161 1:12 

20 ßs 16000 113 199 2:37 

40 us 16000 226 256 6:10 

80 IJ.S 16000 451 301 15 

rable accuracy with the one for the fixed mesh solution. A comparison of the 
execution times for the fixed and adaptive methods shows that the adaptive 
procedure delivers an order of magnitude improvement in performance. 

4-2    Square pulse loading problem in pseudoelastic conditions 

A more realistic initial-boundary value problem is one for which, instead of 
step loading, the boundary condition is a square pulse, that is 

<7o(t) 

0   for t<0 

«70 for  0 < t < tputse 

0   for  t > tpuise 

(52) 

where tpuise is the duration of the pulse. Due to the complicated constitutive 
response and boundary conditions there is no analytical solution to be com- 
pared with. Moreover, there are unresolved questions regarding the uniqueness 
of the weak solution for times t > tpuise when unloading takes place. 

The stress level used for the numerical simulation is OQ = 800MPa and the 
initial temperature is TR = 320 °K > Aoj'. The simulation is done for adiabatic 
conditions, utilizing both equations (13) and (22) to calculate the adiabatic 
response of the SMA. The stress level is chosen so that the full adiabatic 
hysteresis loop can be realized (see Figure 2). The pulse length is tpuise = 10/xs 
and the time step is t = 0.001/zs. 

The evolution of the stress and temperature in the rod up to QOfis is shown 
in Figures 5 and 7. As predicted by (45) the two-shock solution for the stress 
is clearly visible at the end of the pulse load at t = 10ps (Figure 5). The tem- 
perature profile (Figure 7) also has two shocks (equation (46)). The maximum 
temperature T0 = 378.8 °K is achieved in the region of full phase transforma- 
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Fig. 5. Stress profile at different instances of time for a square pulse in adiabatic 
loading 
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Fig. 6. Magnified view near the left end. The unloading (IOJJS) produces two 
right-travelling shock waves (20/xs). The faster unloading wave reflects off the trans- 
formation shock (RS 21//S) and forms a left-travelling wave (24/zs). What follows is 
a series of complicated reflections that gradually kill the initial non-linear shock. 

tion. The jump in the elastic shock is Tei -TR = 0.66 °K and for this reason 
it is not clearly visible in the figure. 

The most noticeable feature observed in Figure 6 is the structure of the un- 
loading pulse. Again a two wave shock structure is seen that corresponds to the 
initial elastic unloading and the following reverse transformation Ml ->• A as 
can be seen from the stress profile at 10 and 20/xs. Both unloading shocks travel 
faster than the forward phase transformation shock. When the faster unload- 
ing front catches up with the forward phase transformation shock (t « 22/zs) 
a left-travelling reflection is generated. The left-travelling wave, as seen for 
t = 24/is, partially reflects from the slower unloading shock and partially con- 
tinues (t = 26JJ,S) until it reflects off the left end of the rod. A complicated 
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Fig. 7. Temperature profile at various times. The jump at the forward transformation 
shock is To — Tt\ — 58.2 °K. The elastic shock is not visible clearly because of its 
small magnitude of Te\ —TR = 0.66 °K. 

series of reflection waves follows. The first reflection results in approximately 
34% decrease of the peak stress level (t = 24/is). The picture becomes even 
more complicated when the slower unloading shock eventually catches up with 
the forward travelling phase transformation shock. Eventually the peak stress 
levels are reduced to values below aei, the critical stress corresponding to the 
onset of phase transformation. The temperature profile at t = 90ßs is hardly 
visible because the material is entirely in the elastic range and the temperature 
in the rod is very close to the reference temperature. The large amounts of 
latent heat generated during the initial loading phase are gradually consumed 
in the reverse transformation as the stress is reduced within the elastic limits. 

For pulse loading it is physically meaningful to compute the energy- dissipation 
due to the phase transformation. If P(T) is the work done by the external forces 
at the left end of the rod from t = 0 up to t = r, )C(T) is the kinetic energy 
of the rod at time t = r and W(T) is the stored elastic energy of the rod then 
the energy dissipation is defined by 

D(r) = 
P{r) -■ (£(r) + W(r)) 

P(r) 
(53) 

The quantities P, K, and >V given by 

P{r)=   /0
r a(0,t)v{0,t)dt 

W{r)^lJ0
La(x)r)ee(x,r)dx 

1C(T)=   U0
L p(v(x,r)Ydx 

(54) 
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Fig. 8. Energy dissipation for a 10 ßs square pulse in adiabatic conditions, 

can be easily computed numerically at each time step. 

The calculations show (Figure 8) that the dissipation level goes from 40% 
at the end of the pulse (T = 10/is) to 64% at T « 22/is when the faster 
unloading wave reflects off the forward travelling transformation wave. The 
high stress levels are then gradually reduced within the elastic limits. The 
energy dissipation reaches approximately 84% at 100 p,s, shortly before the 
elastic front reaches the right end. 

4-3    Detwinning Induced by a pulse load 

In this numerical simulation the same boundary condition (52) as in the pre- 
vious section is used. The initial temperature is set to TR — 295 °K which 
is in the detwinning range and the material is initially in the Ml state. The 
stress pulse has magnitude OQ = AOOMPa which is sufficient to complete the 
detwinning and then obtain the elastic response of the martensite phase. 

There is no latent heat generation during the detwinning deformation. If it is 
assumed that all the work dissipated through inelastic deformations is trans- 
formed into heat, then the change in temperature would be « 2 °K. Therefore 
it is both physically and computationally justified to perform the simulation in 
an isothermal setting. The loading part of the hysteresis is of the same type as 
the loading part (A -> Md) of the stress-strain relationship for stress induced 
martensite. Therefore for the duration of the pulse a two-shock structure for 
the stress distribution can be expected (see equations (45), (50) and (51)). 
This is observed clearly for the stress profile at t - 10//s in Figure 10. 

The unloading is completely elastic and a single linear shock forms, travelling 
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Fig. 10. Magnified view of stress profiles in the region close to the left end of the 
rod. Direction of the shock velocities are indicated by arrows. 

at the speed of the forward elastic shock (both the initial loading response and 
unloading are linear with the elastic modulus of martensite). The unloading 
shock is therefore fast enough to catch up with the nonlinear shock caused by 
the detwinning. This is followed by a series of reflections between the left end 
(which is traction free after the pulse is over) and the forward propagating 
detwinning shock. The stress profile at several different instances of time is 
presented in Figure 9. 

The energy dissipation (Figure 11) in the rod follows a similar path as in the 
previous numerical simulation. The first significant rise in the dissipation levels 
occurs immediately after unloading, at t = lOfis. After the unloading wave 
reaches the forward propagating detwinning front at t « 18(is a new rise in 
the dissipation occurs leading to final levels of approximately 86%. It should 
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Fig. 11. Energy dissipation for a 10 ßs square pulse. 

be noted that this case is not equivalent to the pulse load in pseudoelastic 
conditions because of different initial stress levels. Another difference with the 
pseudoelastic case is that the material is permanently deformed and in order 
to recover its shape the rod has to be reheated. 

5    Dynamic Loading Experiment of an SMA rod 

The dynamic response of a nearly equiatomic NiTi alloy rod is character- 
ized with one dimensional wave propagation experiments in a Hopkinson bar 
arrangement. The main feature of the Hopkinson implementation of the dy- 
namic experiment is in the length of the specimen, Lsp which is quite long. 
This means that a steady-state condition is not reached during the time of 
the experiment and one has to deal with the propagation of the wave in the 
specimen material. 

5.1    Description of the Apparatus 

Hopkinson bar apparatus has become standard in the characterization of the 
dynamic response of materials. Detailed descriptions are provided in many 
handbooks and textbooks (Kolsky, 1963; Graff, 1975), and hence only a brief 
description is provided here. A photograph of the experimental setup is shown 
in Figure 12 and a schematic of the impact device is given in Figure 13. 

The apparatus consists of a striker bar, an input bar and an output bar, all of 
diameter d = 15.5mm and all made of a 4340 steel, quenched and tempered 
to a martensitic state. The yield strength of these bars is about 1.8 GPa and 
they remain elastic during the impact experiments. The density of the bars is 
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Fig. 12. Photograph of the Hopkinson bar experimental setup. The specimen is 
visible at the top-right part of the photograph 
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Fig. 13. Geometry and arrangement of strain gauges in Hopkinson apparatus. (Fig- 
ure not drawn to scale) 

p = 7800kg/m3, the measured bar wave speed Cb = ^Eb/p = 5300m/s and 
Eb is the modulus of elasticity of the steel bar. The striker bar (13) of length L 
is propelled from an air gun at speeds in the range of 10 to 40 m/s. This striker 
impacts the input bar which is 1.7m long. A one dimensional compression wave 
propagates into both bars. Since the striker bar is short, the reflected tension 
pulse arrives at the striker-input bar interface at a time tvuise = 2L/CV At 
this point, the striker comes to a stop and is disengaged from the input bar. 
Hence, a compression pulse of duration tputse is propagated down the length 
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of the input bar. This wave is coupled into the specimen which is in contact 
with the far end of the input bar. Due to the impedance mismatch between 
the specimen and the input bar, part of the pulse is reflected back into the 
input bar and part of the pulse propagates into the specimen. A strain gauge 
mounted at about the middle of the input bar is used to monitor the incident 
compressive pulse and the reflected tensile pulse propagating in the input bar. 
The wave propagating through the specimen, gets coupled into the output bar, 
again with a reflected component due to the impedance mismatch. The output 
bar is free at the far end and so a tensile pulse reflects from the far end of the 
output bar and is unable to transmit into the specimen. Hence the specimen 
is loaded only once. A strain gage mounted at the middle of the output bar is 
used to monitor the strain pulses, in particular the first transmitted pulse, in 
the output bar. 

5.2   Specimen Preparation 

In the experiments a single SMA specimen 345 mm long was used as well 
as two short specimens of 25.4 mm length. All the specimens had diameter 
12.7 mm. After machining the specimens to the appropriate lengths they were 
heated to 540 °C in standard atmosphere for 2 hours and furnace cooled. This 
process was used to erase history of prior plastic deformation. A thin oxide 
layer was formed during the heat treatment, but this did not affect the overall 
response of the material. In the long bar, six strain gauges were placed at dis- 
tances 10 mm, 20 mm, 40 mm, 80 mm, 160 mm and 320 mm from the impact 
end. A high temperature strain gauge adhesive was used and the specimens 
were then annealed at 100 C for 1 hour. Subsequently, the specimens were 
cooled to dry ice temperature (-70 °C) and then brought to room temper- 
ature for testing. All tests were performed at room temperature (nominally 
20 °C). A Differential Scanning Calorimeter (DSC) was used to determine the 
transformation temperatures in the material. As can be seen from the DSC 
measurements shown in Figure 14, under the indicated temperature cycling, 
the specimens were in a twinned martensitic state during the tests. In order 
to obtain preliminary information on the mechanical behavior of this material 
quasi-static compression test was performed on one of the short specimen in a 
standard testing machine. Since the dynamic test involved only detwinning of 
martensite the quasi-static tests were done at room temperature. These tests 
were used to obtain the stiffness of the martensitic phase EM and the critical 
stresses os and 07 for onset and finish of detwinning. 

The material constants used for the detwinning model are summarized in 
Table 3. The hysteresis simulated by the model (Section 2.3) and the actual 
hysteresis from the quasi-static test are given in Figure 15. 
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Table 3 
Material parameters used in the SMA model for detwinning 

Material constant Value Description 

EM 42 x 109 Pa Modulus of elasticity in martensite 

H 0.027 Maximum detwinning strain 

0s -125MPa Start of Ml -> Md deformation 

ai -273MPa Completion of Mt -> Md deformation 
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Fig. 14. Differential Scanning Calorimeter measurements of the SMA specimen. 

5.3    Dynamic Results 

As indicated earlier, in the Hopkinson bar experiment a 345 mm long rod in- 
strumented with six strain gauges was placed behind the input bar. The output 
from these gauges is shown in Figure 16. Strain gauge number 3 (40mm) suf- 
fered a partial debond during the test and hence the results from this gauge 
are not meaningful beyond the point marked by the dark dot in the figure. 
The elastic wave in the input bar was not recorded due to an error in the de- 
vice; all other gauges worked well and recorded the strain profile as the wave 
propagated down the length of the SMA rod. An x-t diagram corresponding 
to elastic wave propagation in this specimen is shown in Figure 17. The strain 
gauge locations are indicated by the thin vertical lines and the leading edge 
of the initial loading pulse is shown by the dark line; this pulse reaches each 
one of the gauges at the time where the dark line intersects the vertical lines. 
From the timing of the elastic wave arrival at each gauge, the elastic wave 
speed was determined to be 2500 m/s. The elastic wave reaches the far end 
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Fig. 15. Quasi-static hysteresis of SMA specimen and the model simulation. 

,w y » »iu. .*,.,'.>. 

40 80 120 160 

Time (microseconds) 

200 

Fig. 16. Strains measured by the gauges mounted on the SMA bar. Gauge 3 suffered 
a partial debond at the point indicated by the dark circle and hence the data beyond 
this time should not be interpreted. 

of the specimen about 138 ßs after impact. The duration of the loading pulse 
is about 90 ps and hence an unloading pulse propagates from down the spec- 
imen with the elastic wave speed (since the unloading is elastic). This wave 
is shown by the line with an arrow at the tip. Time t = 0 corresponds to the 
first arrival of the loading pulse at the strain gauge in the input bar. 

As seen in Figure 16, the strain in the first two gauges increases rapidly to 
a level of about 1.3% and levels off as the load from the input bar levelled 
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tions. 

X-t diagram indicating arrival of the elastic wave front at the gauge loca- 

off. The oscillations seen in these gauges near the plateau are Pochhammer- 
Chree oscillations that appear in bars. At around 290 fis the unloading wave 
from the end of the loading pulse reaches the first two gauges and the strain 
begins to decrease; however, because the strains beyond 0.3% were the result 
of detwinning (see the quasi-static results in Figure 15), these strains are not 
recovered and a permanent strain of about 1% is left at these locations. The 
signal in gauge 4 clearly indicates the dispersion of the wave - higher strain 
levels propagate at significantly slower speeds and arrive later at the gauge 
location. Hence a broadening of the strain pulse can be seen - the peak in 
the strain at gauge 4 occurs 75 ps after elastic wave arrival while it occurs in 
about 20 fis in gauge 1. This delay also results in the peak strain not being- 
sustained for too long as the elastic unloading pulse reaches the gauge quickly; 
once again a residual strain of peak strain - 0.3% is left at this gauge location. 
The same behavior is seen in gauge 5 where due to its distance from the impact 
end, and due to the slowness of the inelastic waves, the peak strain reached is 
only about 0.5%. Once again a residual strain is left in this location. In gauge 
6, the reflected wave from the end of the SMA rod (left free in this experiment) 
causes unloading of the gauge; a very small, but measurable permanent strain 
or detwinning is observed in this location. Subsequent to the test, the rod was 
heat treated through a temperature cycle taking it above A°* first, holding for 
1 hour and then cooling below Mof and warming back to room temperature. 
All strain gauges recovered their original state indicating full recovery of the 
specimen. 
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The results of this experiment can be used to extract the dynamic stress- 
strain response by applying the theory of one-dimensional wave propagation 
in plastic rods due to (Rakhmatulin, 1945; Von Karman and Duwez, 1950; 
Taylor, 1958). The idea is a simple extension of the rod theory for elastic 
waves. Let us assume that stress is only a function of strain, i.e. a = o{e). 
Then the balance of linear momentum (1) can be written in the form 

utt = uxx (55) 

Note that this is not an incremental theory, but a total strain theory; therefore 
unloading cannot be considered here. The wave speed C(e) of disturbances is 
no longer a constant as in the linear elastic case, but a function of strain: 

C(e) = , ^ (56) 

The main result of this one dimensional theory is that a given strain (or stress) 
level will propagate into the rod with a characteristic speed given by equation 
(56). If the propagation speed of strain waves in a one-dimensional rod is 
known (measured with strain gauges as in the experiment discussed above), 
equation (56) can be inverted to determine the stress-strain behavior of the 
material: £ 

a{e)= I o,(QdC = p[ C2(CR (57) 
Jo Jo 

This representation of the wave speed is used to extract the constitutive be- 
havior of the material (Bell, 1960; Kolsky and Douch, 1962). There exists a 
critical point in the stress-strain curve: o'{e) = 0. Strain amplitudes larger 
than this cannot propagate through the material. Of course, in the experi- 
ment discussed above, we have not reached this stage; in fact, this would be 
of interest in determining the propagation of phase transformation fronts and 
such experiments are in progress. 

The propagation speeds of different strain levels were obtained from the results 
shown in Figure 16. The time of arrival of different strain levels at each one of 
the five gauges were determined from the strain measurements. The speed of 
each strain level C(e) was then determined from the known distances between 
the gauges. The variation of the wave speed with strain level is shown in 
Figure 18; a smooth trendline is also shown in the figure. The elastic wave 
speed is about 2500 m/s and all strain levels below about 0.1% travel with 
this speed; this suggests that there is really no significant elastic region and 
that even small strain levels are susceptible to dispersion. A large change 
in the wave speed occurs at around 0.3% strain which corresponds to the 
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strain measurements. The line is an eyeball fit to indicate the data trend. Cubic fits 
over short segments were used to determine the wave speed corresponding to each 
strain level in the determination of the stress-strain behavior. 
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Fig. 19. Stress-strain response evaluated from one-dimensional wave propagation 
measurements (scatter plot) and quasi-static data (solid line). 

onset of massive detwinning deformation. Beyond this level, the wave speed 
drops to about 1000 m/s and varies more slowly. If the averaged data on the 
wave speed variation with strain level is used in equation (57), the resulting 
numerical integration provides the stress strain relationship associated with 
the detwinning deformation in the SMA rod. Such a relationship is shown in 
Figure 19. The scatter in the plot is a result of the averaging of the noisy data 
in Figure 18; the solid line shows the trend of the data. 
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5.4    Numerical simulations of the Hopkinson bar experiment 

A numerical simulation was performed and results were compared with the 
experimental data. As indicated earlier, due to a trigger failure, the signal 
in the input bar was lost so only the readings of the six strain gauges on 
the specimen were available. In order to supply proper boundary conditions 
the signal from the first strain gauge (at 10mm) was used and the remaining 
gauges were simulated. Gauge number 3 was not included in the modelling 
because it unglued during the test. 

The Hopkinson bar experiment was done at room temperature and due to 
the heat treatment of the specimen prior to the test it was in fully twinned 
martensitic state. The SMA model was applied in detwinning conditions (Sec- 
tion 2.3) with the material constants given in Table 3. The measured stress- 
strain response at room temperature and the simulated hysteresis are shown in 
Figure 15. The adaptive FEM scheme was chosen because of its accuracy and 
ability to predict precisely the positions of the both elastic and transformation 
shocks. The results are presented in Figure 20. 

As expected from the numerical examples studied in section 4.1 the strain 
wave splits into an elastic and a transformation front. The transformation 
front timing and magnitude at all strain gauges is in good agreement with the 
experiment. The small oscillations observed at the first two gauges are due to 
surface effects caused by the impacting projectile. Such effects cannot possibly 
be modelled within a 1-D formulation. 

There is, however, a noticeable disagreement in the timing of the elastic fronts. 
The reason for this is the deviations from linear behavior for small strains. The 
polynomial model always predicts a linear response until the beginning of the 
detwinning deformation. However an inspection of Figure 15 shows a smoother 
nonlinear stress-strain relationship for small strain values. 

To verify the hypothesis that the disagreement is due to the initial elastic 
response of the model an independent numerical simulation of the dynamic 
experiment was performed. A phenomenological deformation plasticity model 
was used instead of the constitutive model of Section 2.3. The loading is as- 
sumed to have the form of a sixth degree polynomial that curve fits the loading 
part of the quasi-static hysteresis in Figure 15. The unloading was assumed 
linear, the slope being the modulus of martensite, A2GPa, as measured by 
the quasi-static experiments. Due to the fact that the deformation is mostly 
detwinning of martensite there is no significant release of latent heat, so the 
quasi-static hysteresis is very close to the actual material behavior in the dy- 
namic case (Figure 19). 

The results of the simulation of the dynamic problem are shown in Figure 21. 
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Fig. 20. And adaptive FE analysis of experimental data under isothermal conditions. 
The first strain gauge is used to define the boundary condition. 
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Fig. 21. And adaptive FE analysis of experimental data under isothermal conditions 
and a curvefit of the hysteresis. The first strain gauge is used to define the boundary 
condition. 

This time the wave profiles are matched much more closely and the small 
disagreements can be attributed to measurement errors and effects of lateral 
inertia not included in the simulation. It should be noted that unlike a consti- 
tutive model based on physical principles such an approach will only work for 
a particular SMA specimen and particular operating temperature. However 
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using a curve fit for the loading part of the hysteresis is sufficient to check 
whether disagreements between experiments and simulations are indeed due 
to the constitutive model. 

6    Conclusions 

The problem of dynamic loading of one-dimensional polycrystalline SMA rods 
has been explored numerically and experimentally. FEM simulations were per- 
formed for SMAs experiencing both pseudoelastic phase transformation as well 
as detwinning deformations. A long SMA rod was tested in a split Hopkin- 
son bar experiment under detwinning conditions. The wave propagation was 
observed through strain gauges placed on the surface of the specimen. The 
strain history at the gauge locations obtained through numerical simulations 
of the dynamic experiment was found to be in good agreement with the actual 
results. 

Computational solutions were shown to coincide with known analytical re- 
sults. Nonlinear shock formation and velocities were captured correctly by the 
FEM simulations. The standard semi-discrete FEM approach for hyperbolic 
problems was complemented by an adaptive mesh refinement technique. The 
utilization of the Zienkiewicz-Zhu error indicator lead to an order of mag- 
nitude decrease of the computational time. Energy dissipation calculations 
for both detwinning of martensite and stress-induced phase transformation 
showed that the strain energy can be reduced by 80-90% which suggests that 
SMAs can be used effectively as shock-absorption devices. 

On the experimental side, it has been shown that an instrumented Hopkinson 
bar can be used effectively to evaluate the wave and phase propagation char- 
acteristics in the SMA rods. Through the use of multiple strain gauges, the 
phase velocity at the different strain levels was obtained easily. An inelastic 
deformation theory was used to interpret the dispersion in terms of the un- 
derlying dynamic material response of the material. Dynamic and quasi-static 
material response were shown to be in excellent agreement. 

Through careful calibration of the constitutive model for SMAs the peak strain 
levels of the Hopkinson bar experiment were accurately predicted. The main 
drawback of this model is its initial linear response in the case of detwinning 
and the existence of kinks in the hysteresis curve. Accurate predictions of the 
entire experimental data were obtained by using a polynomial curve fit of the 
quasi-static hysteresis of the material. Both the wave timings, shape and peaks 
were modelled within experimental error. 

The material and environmental conditions used in the Hopkinson bar exper- 
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iments correspond to a detwinning deformation of the martensitic phase, but 
the methods can be easily adapted to stress induced martensitic transforma- 
tion in tests at higher temperatures. Theoretical work can also be extended 
to more realistic 2-D and 3-D geometries. Complicated SMA components and 
structures can be simulated to better understand the nonlinear wave propa- 
gation phenomena as well as the practical aspects of their energy dissipation 
capabilities. More refined models which incorporate both detwinning and pseu- 
doelastic deformations simultaneously and also predict accurately the smooth 
hysteresis of the detwinning deformation will be extremely helpful in further 
studies of wave propagations in polycrystalline SMAs and are currently under 
consideration. 
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